

Transverse Spin Physics

Lecture II

Alexei Prokudin

The plan:

Lecture I:

Transverse spin structure of the nucleon Overview of past experiments History of interpretation Overview of present understanding

Lecture II

Transverse Momentum Dependent distributions (TMDs) Sivers function Twist-3

Lecture III

Transversity
Collins Fragmentation Function
Global analysis

Lecture IV

Evolution of TMDs

Transverse Momentum Dependent distributions

Deep Inelastic Scattering (DIS)

In order to access **distributions** we could use deep inelastic scattering

The energy is big enough to transform the proton in a lot of final states

Bjorken limit is

$$\mathbf{Q^2} o \infty$$

$$\mathbf{P}\cdot\mathbf{q}
ightarrow\infty$$

$$egin{aligned} \mathbf{x_{Bj}} &\equiv rac{\mathbf{Q^2}}{\mathbf{2P \cdot q}}
ightarrow \mathbf{const.} \end{aligned}$$

Deep Inelastic Scattering (DIS)

Distributions measured in deep inelastic scattering

This sum makes it sensitive to parton structure!

Parton model is a logical step, partons are pointlike and dilute, so photon interacts with them incoherently

Parton model is a logical step, partons are pointlike and dilute, so photon interacts with them incoherently

This diagram is called "handbag diagram"

Why quarks are on mass-shell?

This one is virtual! However the main contribution comes from

$$\int d^4p \left(\frac{1}{p^2 + i\epsilon}\right) \left(\frac{1}{p^2 - i\epsilon}\right) \implies p^2 \approx 0$$

Jefferson Lab

Definition of parton distribution

$$\Phi_{ij}(p,P) = \int \frac{d\xi^{+}d\xi^{-}d^{2}\xi_{T}}{(2\pi)^{4}} e^{ip\cdot\xi} \langle P, S_{P}|\bar{\psi}_{j}(0)\psi_{i}(\xi)|P, S_{P}\rangle$$

Definition of parton distribution

$$\Phi_{ij}(p,P) = \int \frac{d\xi^{+}d\xi^{-}d^{2}\xi_{T}}{(2\pi)^{4}} e^{ip\cdot\xi} \langle P, S_{P}|\bar{\psi}_{j}(0)\psi_{i}(\xi)|P, S_{P}\rangle$$

Fourier transform from coordinate to momentum space

Jefferson Lab

Definition of parton distribution

Definition of parton distribution

$$\Phi_{ij}(p,P) = \int \frac{d\xi^{+} d\xi^{-} d^{2}\xi_{T}}{(2\pi)^{4}} e^{ip\cdot\xi} \langle P, S_{P} | \bar{\psi}_{j}(0)\psi_{i}(\xi) | P, S_{P} \rangle$$

The proton state vector

Definition of parton distribution

$$\Phi_{ij}(p,P) = \int \frac{d\xi^{+}d\xi^{-}d^{2}\xi_{T}}{(2\pi)^{4}} e^{ip\cdot\xi} \langle P, S_{P}|\bar{\psi}_{j}(0)\psi_{i}(\xi)|P, S_{P}\rangle$$

Position of the field in coordinate space

Definition of parton distribution

$$\Phi_{ij}(p,P) = \int \frac{d\xi^+ d\xi^- d^2 \xi_T}{(2\pi)^4} e^{ip\cdot\xi} \underline{\langle P, S_P | \bar{\psi}_j(0)\psi_i(\xi) | P, S_P \rangle}$$

This matrix element is called "bilocal"

What do we know about quark momentum? Suppose that proton is moving along Z direction with a high momentum, then

$$p^{\mu} = xP^{+}n_{+}^{\mu} + \frac{p^{2} + \mathbf{p}_{\perp}^{2}}{2xP^{+}}n_{-}^{\mu} + p_{\perp}^{\mu}$$

"Big" component $\sim Q$

$$x=p^+/P^+$$
 is a new variable called lightcone momentum fraction

$$P^{+} = \frac{1}{\sqrt{2}} \left(P^{0} + P^{z} \right)$$
$$P^{-} = \frac{1}{\sqrt{2}} \left(P^{0} - P^{z} \right)$$

$$P^{-} = \frac{1}{\sqrt{2}} \left(P^0 - P^z \right)$$

What do we know about quark momentum?

$$p^{\mu} = xP^{+}n_{+}^{\mu} + \frac{p^{2} + \mathbf{p}_{\perp}^{2}}{2xP^{+}}n_{-}^{\mu} + p_{\perp}^{\mu}$$
 "Big" component $\sim Q$ "Small" component $\sim 1/Q$

What do we know about quark momentum?

$$p^{\mu} = xP^+n_+^{\mu} + \frac{p^2 + \mathbf{p}_\perp^2}{2xP^+}n_-^{\mu} + p_\perp^{\mu}$$
 "Big" component $\sim Q$ "Small" component $\sim 1/Q$

What do we know about hadronic tensor?

$$W^{\mu\nu} = \sum_{q} e_{q}^{2} \int \frac{d^{4}p}{(2\pi)^{4}} Tr(\gamma^{\mu}(\not p + \not q) \gamma^{\nu} \Phi(P, p)) \delta((p+q)^{2})$$

$$\delta((p+q)^2) \approx \delta(-Q^2 + 2xP \cdot q) = \frac{1}{2P \cdot q} \delta(x_{Bj} - x) ,$$

Quarks are "probed" at value of x_{Bi}

Gauge invariance

The quark and remnant are colored thus they interact via gluon exchanges!

This object is called Wilson line $\mathcal{W}(0,\xi)$

For DIS:

Transverse Momentum Dependent distributions

$$\Phi_{ij}(x, \mathbf{k}_{\perp}) = \int \frac{d\xi^{-}}{(2\pi)} \frac{d^{2}\xi_{\perp}}{(2\pi)^{2}} e^{ixP^{+}\xi^{-} - i\mathbf{k}_{\perp}\xi_{\perp}} \langle P, S_{P} | \bar{\psi}_{j}(0) \mathcal{U}(\mathbf{0}, \boldsymbol{\xi}) \psi_{i}(\boldsymbol{\xi}) | P, S_{P} \rangle |_{\xi^{+} = 0}$$

SIDIS in IMF:

$$\mathcal{U}(a,b;n) = e^{-ig \int_a^b d\lambda n \cdot A_\alpha(\lambda n) t_\alpha}$$

Ensures gauge invariance of the distribution, cannot be canceled by gauge choice

TMDs

8 functions in total (at leading Twist)

Each represents different aspects of partonic structure

Each function is to be studied

Kotzinian (1995), Mulders, Tangerman (1995), Boer, Mulders (1998)

Semi Inclusive Deep Inelastic Scattering (SIDIS)

Factorization

Distribution

Semi Inclusive Deep Inelastic scattering

One can rewrite the cross-section in terms of **18** structure functions

Each structure function encodes parton dynamics via convolutions of TMDs when factorization is applicable

Mulders, Tangerman (1995), Boer, Mulders (1998) Bacchetta et al (2007)

$$\begin{split} \frac{d\sigma}{dx\,dy\,d\psi\,dz\,d\phi_h\,dP_{h\perp}^2} &= \\ \frac{\alpha^2}{xy\,Q^2}\,\frac{y^2}{2\,(1-\varepsilon)} \left(1+\frac{\gamma^2}{2x}\right) \left\{F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\,\varepsilon(1+\varepsilon)}\,\cos\phi_h\,F_{UU}^{\cos\phi_h} \right. \\ &+ \varepsilon\cos(2\phi_h)\,F_{UU}^{\cos\,2\phi_h} + \lambda_e\,\sqrt{2\,\varepsilon(1-\varepsilon)}\,\sin\phi_h\,F_{LU}^{\sin\phi_h} \,+ \dots \end{split}$$

Semi Inclusive Deep Inelastic scattering

One can rewrite the cross-section in terms of **18** structure functions

Each structure function encodes parton dynamics via convolutions of TMDs when factorization is applicable

Mulders, Tangerman (1995), Boer, Mulders (1998) Bacchetta et al (2007)

$$F_{UU,T} = x \sum_{q} e_q^2 \int d^2k_{\perp} d^2p_{\perp} \delta^{(2)} (\mathbf{P}_{h\perp} - z\mathbf{k}_{\perp} - \mathbf{p}_{\perp}) f^q(x, k_{\perp}^2) D_q(z, p_{\perp}^2)$$

TMDs

8 functions in total (at leading Twist)

Each represents different aspects of partonic structure

Each function is to be studied

Sivers function

Kotzinian (1995), Mulders, Tangerman (1995), Boer, Mulders (1998)

Tomographic scan of the nucleon

Anselmino et al 2009

News about the structure

Both proton and quarks are so-called spin-½ particles

Quarks are confined inside an extended proton and move – the motion creates Orbital Angular Momentum

Can this motion be correlated with the spin of the proton?

$$f(x, \mathbf{k_T}, \mathbf{S_T}) = f_1(x, \mathbf{k_T^2}) - f_{1T}^{\perp}(x, \mathbf{k_T^2}) \frac{\epsilon_T^{ij} \mathbf{k_{Ti} S_{Tj}}}{M}$$

$$f(x, \mathbf{k_T}, \mathbf{S_T}) = f_1(x, \mathbf{k_T^2}) - f_{1T}^{\perp}(x, \mathbf{k_T^2}) \underbrace{\epsilon_T^{ij} \mathbf{k_{Ti} S_{Tj}}}_{M}$$

Correlation of the spin and motion of the quarks

$$f(x, \mathbf{k_T}, \mathbf{S_T}) = f_1(x, \mathbf{k_T^2}) - f_{1T}^{\perp}(x, \mathbf{k_T^2}) \frac{\epsilon_T^{ij} \mathbf{k_{Ti} S_{Tj}}}{M}$$

Sivers function

$$f(x, \mathbf{k_T}, \mathbf{S_T}) = f_1(x, \mathbf{k_T^2}) - f_{1T}^{\perp}(x, \mathbf{k_T^2}) \frac{\mathbf{k_x}}{M}$$

Suppose the spin is along Y direction:

Deformation in momentum space is:

This is called "dipole" deformation.

$$S_T = (0,1)$$

$$x \cdot f(x^2 + y^2)$$

$$f(x, \mathbf{k_T}, \mathbf{S_T}) = f_1(x, \mathbf{k_T^2}) - f_{1T}^{\perp}(x, \mathbf{k_T^2}) \frac{\mathbf{k_x}}{M}$$

Suppose the spin is along Y direction: Deformation in momentum space is:

$$S_T = (0,1)$$
$$x \cdot f(x^2 + y^2)$$

This is called "dipole" deformation.

No correlation:

Correlation:

Sign change

Colored objects are surrounded by gluons, profound consequence of gauge invariance.

Sivers function has opposite sign when gluon couple after quark scatters (SIDIS) or before quark annihilates (Drell-Yan)

Brodsky,Hwang, Schmidt Belitsky,Ji,Yuan Collins Boer,Mulders,Pijlman, Kang, Qiu, AP etc

One of the main goals is to verify this relation. It goes beyond "just" check of TMD factorization.

Motivates Drell-Yan experiments

AnDY, COMPASS, JPARC, PAX, FERMILAB etc

Barone et al., Anselmino et al., Yuan, Vogelsang, Schlegel et al., Kang, Qiu, Metz, Zhou, AP etc

Global analysis

Tomographic scan of the nucleon

Why?

Structure functions are convolutions of unobserved momenta:

$$F \sim \int d^2 \vec{k}_{\perp} d^2 \vec{p}_{\perp} \delta^{(2)}(z \vec{k}_{\perp} + \vec{p}_{\perp} - \vec{P}_{h\perp}) f(x, \vec{k}_{\perp}) D(z, \vec{p}_{\perp})$$

Why?

Structure functions are convolutions of unobserved momenta:

$$F \sim \int d^2 \vec{k}_{\perp} d^2 \vec{p}_{\perp} \delta^{(2)} (z \vec{k}_{\perp} + \vec{p}_{\perp} - \vec{P}_{h\perp}) f(x, \vec{k}_{\perp}) D(z, \vec{p}_{\perp})$$

Observed in experiment

No analogue of Mellin transform to help to perform this convolution found yet!

Sivers function

What do we learn from 3D distributions?

$$f(x, \mathbf{k_T}, \mathbf{S_T}) = f_1(x, \mathbf{k_T^2}) - f_{1T}^{\perp}(x, \mathbf{k_T^2}) \frac{\mathbf{k_{T1}}}{M}$$

The same statement in figures:

This is what we know from experimental data already:

How do we measure Sivers function?

$$A_{UT}^{\sin(\Phi_h - \Phi_S)} = \frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}}$$

$$\sigma^{\uparrow} - \sigma^{\downarrow} = -f_{1T}^{\perp} \otimes d\hat{\sigma} \otimes D_{h/q} \sin(\phi_h - \phi_S)$$

Unpolarised electron beam Transversely polarised proton

$$A_{UT}^{\sin(\Phi_h - \Phi_S)} = -\frac{\sum_q e_q^2 f_{1T}^{\perp} \otimes d\hat{\sigma} \otimes D_{h/q}}{\sum_q e_q^2 f_1 \otimes d\hat{\sigma} \otimes D_{h/q}}$$

Bacchetta, Diehl, Goeke, Metz, Mulders, Schlegel (2006)

HERMES

$$ep \rightarrow e\pi X$$
, $p_{lab} = 27.57$ GeV.

Anselmino et al 2010

COMPASS

$$\mu D \rightarrow \mu \pi X$$
, $p_{lab} = 160$ GeV.

Anselmino et al 2010

Global extractions

HERMES 02 -COMPASS 04 -JLAB 11 -

Vogelsang, Yuan 05 Collins et al 06 Anselmino et al 06-09 Bacchetta, Radici 11

Extractions compare well with each other

Up and Down Sivers functions have opposite sign

Up quark > 0 Down quark < 0

Extractions compare well with each other

Gamberg, Kang, AP, 13

Up and Down Sivers functions have opposite sign

Up quark > 0 Down quark < 0

Comparison with models

Quark-diquark models Bacchetta et al (2010),

Bag models

Light cone wf model Pasquini, Yuan (2011),

Gamberg, Goldstein, Schlegel (2010)

Yuan (2003), Avakian, Efremov, Schweitzer, Yuan (2010)

Pasquini, Yuan (2011) Bacchetta et al (2010)

Good agreement.

$$f_{1T}^{\perp u} < 0$$

$$f_{1T}^{\perp d} > 0$$

What do we learn from 3D distributions?

$$f(x, \mathbf{k_T}, \mathbf{S_T}) = f_1(x, \mathbf{k_T^2}) - f_{1T}^{\perp}(x, \mathbf{k_T^2}) \frac{\mathbf{k_{T1}}}{M}$$

The slice is at:

$$x = 0.1$$

Low-x and high-x region is uncertain
JLab 12 and EIC will contribute

No information on sea quarks

In future we will obtain much clearer picture

Phenomenology

It is extremely important to test our knowledge by **predicting** results of future measurements

Prediction

Anselmino, Boglione, D'Alesio, Kotzinian, Murgia, Melis, AP, Turk EPJA 39 (2009) 89-100

Measurement

X. Qian et all (JLab HALL A Coll) PRL 107 (2011) 072003

Perspectives

Projected Data (E12-10-006)

- TMD evolution will be implemented in the fits
- High precision JLab 12 data will test models

Sivers function and twist-3

Collinear vs TMD factorization

We can consider two different kinematical regions

$$Q_1,Q_2,...\gg \Lambda_{QCD}$$
 Collinear $Q_1\gg Q_2>\Lambda_{QCD}$ TMD

- Twist-3 integration over parton momenta
- TMD direct information on partonic transverse motion

Consistent in the overlap region!

TMDs and twist-3 are related

At operator level:

Boer, Mulders, Pijlman, Ji, Qiu, Vogelsang, Yuan, Koike, Vogelsang, Yuan Zhou, Yuan, Liang Bacchetta, Boer, Diehl, Mulders

Universal in all processes!

Asymmetry contains contributions from distribution (Sivers) and fragmentation (Collins)

Comparison is difficult: Sign puzzle

Kang, Qiu, Vogelsang, Yuan (2011)

Data analysis

Proton Proton Left -Right asymmetry

$$A(\ell, \vec{s}) \equiv rac{\Delta \sigma(\ell, \vec{s})}{\sigma(\ell)} = rac{\sigma(\ell, \vec{s}) - \sigma(\ell, -\vec{s})}{\sigma(\ell, \vec{s}) + \sigma(\ell, -\vec{s})}$$

Only one scale $\,P_{T}\,$

Collinear analysis:

Kouvaris, Qiu,

Vogelsang, Yuan (2006)

Kanazava, Koike (2010)

TMD analysis:

Anselmino et al (2006)

SIDIS

$$A_{UT} = \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}}$$

$$A_{UT} = \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}} \qquad d\sigma^{\uparrow} - d\sigma^{\downarrow} \propto \underbrace{f_{1T}^{\perp} \otimes D_{1} \sin(\phi_{h} - \phi_{S})}_{\text{Sivers effect}}$$

0.1 0.2 0.3 0.4 0.5 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 1 P_T (GeV) Two scales P_T, Q

TMD analysis: Anselmino et al (2008); Collins et al (2007); Vogelsang, Yuan (2006)

Comparison of results

Kang, Qiu, Vogelsang, Yuan (2011)

$$g_s T_F(x,x) = -2M f_{1T}^{\perp(1)}(x)$$

Collinear analysis: Kouvaris, Qiu, Vogelsang, Yuan (2006)

TMD analysis:

Anselmino et al (2008)

Comparison of results

Kang, Qiu, Vogelsang, Yuan (2011) $g_s T_F(x,x) = -2M f_{1T}^{\perp(1)}(x)$

Compare

TMD analysis:

Anselmino et al (2008)

Sign puzzle!

A_N from twist-3 fragmentation functions (Kanazawa, Koike, Metz, Pitoniak, arXiv:1404.1033)

good fit of AN mainly due to the new twist-3 fragmentation function

Metz and Pitonyak result

Calculation of twist-3 fragmentation term (Metz and DP - PLB 723 (2013))

$$\begin{split} \frac{P_h^0 d\sigma_{pol}}{d^3 \vec{P}_h} &= -\frac{2\alpha_s^2 M_h}{S} \, \epsilon_{\perp \mu \nu} \, S_{\perp}^{\mu} P_{h \perp}^{\nu} \sum_i \sum_{a,b,c} \int_{z_{min}}^1 \frac{dz}{z^3} \int_{x_{min}'}^1 \frac{dx'}{x'} \, \frac{1}{x'S + T/z} \, \frac{1}{-x\hat{u} - x'\hat{t}} \\ &\times \frac{1}{x} \, h_1^a(x) \, f_1^b(x') \, \bigg\{ \bigg(\hat{H}^{C/c}(z) - z \frac{d\hat{H}^{C/c}(z)}{dz} \bigg) S_{\hat{H}}^i + \frac{1}{z} \, H^{C/c}(z) \, S_H^i \\ &\quad + 2z^2 \int \frac{dz_1}{z_1^2} \, PV \, \frac{1}{\frac{1}{z} - \frac{1}{z_1}} \, \hat{H}_{FU}^{C/c,\Im}(z, z_1) \, \frac{1}{\xi} \, S_{\hat{H}_{FU}}^i \bigg\} \end{split}$$

- "Derivative term" has been calculated previously (Kang, Yuan, Zhou (2010))
- First time we have a complete pQCD result for this term in pp within the collinear twist-3 approach

$$\hat{H}^{h/q}(z)=z^2\int d^2ec{k}_\perp\,rac{ec{k}_\perp^2}{2M_h^2}\,H_1^{\perp\,h/q}(z,z^2ec{k}_\perp^{\,2})$$
 Collins-type function

$$2z^3 \int_z^{\infty} \frac{dz_1}{z_1^2} \frac{1}{\frac{1}{z} - \frac{1}{z}} \hat{H}_{FU}^{h/q,\Im}(z, z_1) = H^{h/q}(z) + 2z\hat{H}^{h/q}(z)$$
 3-parton correlator

Fit the unknown twist-3 FFs

Also pt dependence

AnDY data on jet AN

Can we measure AN that contains only one of the effects?

Yes! - Jet AN (no fragmentation) has only Sivers like contributions!

$$P^{\uparrow}P \to JetX$$

AnDY Collaboration (2013) arXiv:1304.1454

Jet AN contains:

Process dependence → test of the process dependence Relation twist-3 and TMD → test of twist-3 and TMD relation

We calculate jet AN in twist-3:

$$E_{J} \frac{d\Delta\sigma(s_{\perp})}{d^{3}P_{J}} = \epsilon_{\alpha\beta} s_{\perp}^{\alpha} P_{J\perp}^{\beta} \frac{\alpha_{s}^{2}}{s} \sum_{a,b} \int \frac{dx}{x} \frac{dx'}{x'} f_{b/B}(x')$$

$$\times \left[T_{a,F}(x,x) - x \frac{d}{dx} T_{a,F}(x,x) \right]$$

$$\times \frac{1}{\hat{u}} H_{ab \to c}^{\text{Sivers}}(\hat{s}, \hat{t}, \hat{u}) \delta\left(\hat{s} + \hat{t} + \hat{u}\right),$$

Process dependence is here

We calculate jet AN in twist-3:

Gamberg, Kang, (2011)

Both initial and final state interactions contribute

$$f_{1T}^{\perp a,qq'\to qq'} = \left(\frac{3}{N_c^2 - 1}\right) f_{1T}^{\perp a,SIDIS}$$

Process dependence is here

Many other partonic channels $qg \rightarrow qg, \ \bar{q}q \rightarrow gg...$

$$qg \rightarrow qg, \ \bar{q}q \rightarrow gg...$$

We calculate jet AN in twist-3:

$$E_{J}\frac{d\Delta\sigma(s_{\perp})}{d^{3}P_{J}}=\epsilon_{\alpha\beta}s_{\perp}^{\alpha}P_{J\perp}^{\beta}\frac{\alpha_{s}^{2}}{s}\sum_{a,b}\int\frac{dx}{x}\frac{dx'}{x'}f_{b/B}(x')$$

$$\times\left[T_{a,F}(x,x)-x\frac{d}{dx}T_{a,F}(x,x)\right]$$
 Twist-3 TMD relation
$$\times\frac{1}{\hat{u}}H_{ab\to c}^{\mathrm{Sivers}}(\hat{s},\hat{t},\hat{u})\delta\left(\hat{s}+\hat{t}+\hat{u}\right),$$
 Use Sivers that describes SIDIS:

Jet AN corresponds to high x region which is not yet accessible in SIDIS \rightarrow refit SIDIS data in order to explore high x region

Gamberg, Kang, AP (2013) compatible with

Anselmino et al (2009)

Compare with AnDY data:

$$\langle y \rangle = 3.25, \ \sqrt{s} = 500 (GeV)$$

Compare with AnDY data:

This region corresponds to SIDIS kinematical region: agreement is very encouraging

$$\langle y \rangle = 3.25, \ \sqrt{s} = 500 (GeV)$$

Compare with AnDY data:

This region relies on large-x region, future JLab 12 measurement is important

$$\langle y \rangle = 3.25, \ \sqrt{s} = 500 (GeV)$$

Compare with AnDY data:

$$\langle y \rangle = 3.25, \ \sqrt{s} = 500 (GeV)$$

Gamberg, Kang, AP (2013)

✓ The sign is correct

✓ The size is correct

Compare with AnDY data:

$$\langle y \rangle = 3.25, \ \sqrt{s} = 500 (GeV)$$

Gamberg, Kang, AP (2013)

- The sign is correct
- ✓ The size is correct

Result is indication

- TMD and twist-3 are compatible
- Sivers effect is process dependent

Fundamental tests of QCD!

Future

Direct photon production $\ P^{\uparrow}P
ightarrow \gamma X$

- Bigger asymmetry
- This measurement allows to test consistency of TMD and twist-3 factorizations

$$\langle y \rangle = 3.5, \ \sqrt{s} = 200 (GeV)$$

Future

Drell-Yan

$$P^{\uparrow}P \to \ell^+\ell^-X$$

 This measurement proves directly process dependence of Sivers effect

$$4 < Q < 8(GeV) \sqrt{s} = 500(GeV)$$

